Biological and synthetic scaffold: an extra cellular matrix for constructive tissue engineering

  • Dr. Jaianand Kannaiyan Head, Clinical Research, CelluGen Biotech Private Limited, Gurgaon, Haryana, India
  • Dr. Hemlata Chhabra Consultant, Research & Development, CelluGen Biotech Private Limited, Gurgaon, Haryana, India
  • Dr. Palaniyandi M Assistant Manager, Tissue Culture, CelluGen Biotech Private Limited, Gurgaon, Haryana, India
  • Dr Mr. Rajangam B Manager, Tissue Culture, CelluGen Biotech Private Limited, Gurgaon, Haryana, India
  • Dr Mr. Suriya Narayanan S Head, Lab Operations, CelluGen Biotech Private Limited, Gurgaon, Haryana, India
  • Dr. Anubhav Pandey Medical Director, CelluGen Biotech Private Limited, Gurgaon, Haryana, India
Keywords: Amniotic membrane, Biological scaffold, Collagen, Synthetic scaffold, Tissue engineering

Abstract

Worldwide many people suffering from tissue dysfunctions or damages need rapid transplantation. Tissue engineering has attracted attention as therapeutic modality aiming at repairing lost or damaged tissues. Critical step in tissue engineering is fabrication of three dimensional scaffolds which mimic the extracellular matrix of tissues and promote tissue regeneration process. Extensive research has been carried out to develop a compatible scaffold which mimic the anatomical site of injury and as well as accessing the stem cells and growth factors to home on the injured site. The present article provides an overview on different scaffold approaches and materials used to fabricate scaffolds, with their properties and associated advantages and disadvantages. In particular, the therapeutic potential of amniotic membrane and collagen scaffold has been extensively reviewed in here.

Downloads

Download data is not yet available.

References

Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008 Dec;17 Suppl 4:467-79. doi: https://doi.org/10.1007/s00586-008-0745-3. Epub 2008 Nov 13.

O’Brien FJ. Biomaterials and scaffolds for tissue engineering. Mater today. 2011Mar;14(3):88-95. doi: https://doi.org/10.1016/S1369-7021(11)70058-X.

Lu T, Li Y, Chen T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine. 2013 Jan;8:337-50. doi: https://dx.doi.org/10.2147%2FIJN.S38635.

Zohora FT. Biomaterials as porous scaffolds for tissue engineering applications: A review. ESJ. 2014 Jul;10(21):186-209.

Guneta V, Wang JK, Maleksaeedi S, He ZM, Wong MTC, Choong C. Three Dimensional Printing of Titanium for Bone Tissue Engineering Applications: A Preliminary Study. J Biomim Biomater Biomed Eng. 2011;21:101-15. doi: https://doi.org/10.4028/www.scientific.net/JBBBE.21.101.

Kumar A, Biswas K, Basu B. Hydroxyapatite-titanium bulk composites for bone tissue engineering applications. J Biomed Mater Res A. 2015 Feb;103(2):791-806. doi: https://doi.org/10.1002/jbm.a.35198.

Smith CM, Roy TD, Bhalkikar A, Li B, Hickman JJ, Church KH. Engineering titanium and polycaprolactone construct for a biocompatible interface between the body and artificial limb. Tissue Eng Part A. 2010 Feb;16(2):717-24. doi: https://doi.org/10.1089/ten.tea.2009.0066.

Ruperez E, Manero JM, Riccardi K, Li Y, Aparicio C, Gil FJ. Development of tantalum based scaffold for orthopedic applications produced by space-holder method. Mater Design. 2015 Oct;83:112-9. doi: https://doi.org/10.1016/j.matdes.2015.05.067.

Gordon WJ, Conzemius MG, Birdsall E, Wannemuehler Y, Mallapragada S, Lewallen DG, Yaszemski MJ, O'Driscoll SW. Chondroconductive potential of tantalum trabecular metal. J Biomed Mater Res B Appl Biomater. 2005 Nov;75(2):229-33.

Quadbeck P, Hauser R, Kummel K, Standke G, Stephani G, Nies B et al. Iron based cellular metals for degradable synthetic bone replacement. In PM 2010 World Congress PM Biomaterials. 2010; 1-8.

Murakami T, Ohara K, Narushima T, Ouchi C. Development of a new method for manufacturing iron foam using gases generated by reduction of iron oxide. Mater Trans. 2007 Sep;48(11):2937–44. doi: https://doi.org/10.2320/matertrans.MRA2007127.

Tan L, Gong M, Zheng F, Zhang B, Yang K. Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds. Biomed Mater. 2009 Feb;4(1):015016. doi: https://doi.org/10.1088/1748-6041/4/1/015016. Epub 2009 Jan 13.

Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006 Mar;27(9):1728-34. Epub 2005 Oct 24.

Baino F, Novajra G, Vitale-brovarone C. Bioceramics and scaffolds: A winning combination for tissue engineering. Front Bioeng Biotechnol. 2015 Dec;3(202):1-49. doi: https://doi.org/10.3389/fbioe.2015.00202.

Oh S, Oh N, Appleford M, Ong JL. Bioceramics for tissue engineering applications- A review. Am J Biochem Biotechnol. 2006 Feb;2(2):49-56. doi: https://doi.org/10.3844/ajbbsp.2006.49.56.

Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials. 2006 Nov;27(32):5480-9. doi: https://doi.org/10.1016/j.biomaterials.2006.06.028.

Gervaso F, Scalera F, Padmanabhan SK. High performance hydroxyapatite scaffolds for bone tissue engineering applications. Int J Appl Ceram Tech. 2012 May;9(3):507-16. doi: https://doi.org/10.1111/j.1744-7402.2011.02662.x.

Tripathi G, Basu B. A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluations. Ceram Int. 2012 Jan;38(1):341-9. doi: https://doi.org/10.1016/j.ceramint.2011.07.012.

Chen G, Lv Y, Dong C, Yang L. Effect of internal structure of collagen/hydroxyapatite scaffold on the osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther. 2015 Mar;10(2):99-108. doi: https://doi.org/10.2174/1574888X09666140812112631.

Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 2013 Sep;9(9):8037-45. doi: https://doi.org/10.1016/j.actbio.2013.06.014. Epub 2013 Jun 19.

Wang P, Zhao L, Liu J, Weir MD, Zhou X4, Xu HH. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2014 Sep;2:14017. doi: https://doi.org/10.1038/boneres.2014.17. eCollection 2014.

Haaparanta AM, Haimi S, Ella V, Hopper N, Miettinen S, Suuronen R et al. Porous polylactide/beta tricalcium phosphate composite scaffolds for tissue engineering applications. J Tissue Eng Regen Med. 2010 Jul;4(5):366-73. doi: https://doi.org/10.1002/term.249.

Fu Q, Rahaman MN, Bal BS, Bonewald LF, Kuroki K, Brown RF. Silicate, borosilicate and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. J Biomed Mater Res A. 2010 Oct;95(1):172-9. doi: https://doi.org/10.1002/jbm.a.32823.

Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomater. 2011 Jun;7(6):2355-73. doi: https://doi.org/10.1016/j.actbio.2011.03.016. Epub 2011 Mar 21.

Mondal D, Griffith M, Venkatraman SS. Polycaprolactone -based biomaterial for tissue engineering and drug delivery: Current scenario and challenges. Int J Polym Mater Polym Biomater. 2016 Jan; 65(5):255-65. doi: https://doi.org/10.1080/00914037.2015.1103241.

Tam K, Cheyyatraviendran S, Venugopal J, Biswas A, Choolani M, Ramakrishna S, Bongso A, Fong CY. A nanoscaffold impregnated with human wharton's jelly stem cells or its secretions improves healing of wounds. J Cell Biochem. 2014 Apr;115(4):794-803. doi: https://doi.org/10.1002/jcb.24723.

Lou T, Leung M, Wang X, Chang JY, Tsao CT, Sham JG et al. Bi-layer scaffold of chitosan/PCL-nanofibrous mat and PLLA-microporous disc for skin tissue engineering. J Biomed Nanotechnol. 2014 Jun;10(6):1105-13. doi: https://doi.org/10.1166/jbn.2014.1793.

Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005 Aug;26 (23):4817–27. doi: https://doi.org/10.1016/j.biomaterials.2004.11.057.

Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng. 2004 Jan;10(1-2):33-41. doi: https://doi.org/10.1089/107632704322791673.

Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004 Feb; 25(5):877-86. doi: https://doi.org/10.1016/S0142-9612(03)00593-3.

Cao H, Kuboyama N. A biodegradable porous composite scaffold of PGA/β TCP for Bone tissue Engineering. Bone. 2010 Feb;46(2):386-95. doi: https://doi.org/10.1016/j.bone.2009.09.031.

Sekiya N, Ichioka S, Terada D, Tsuchiya S, Kobayashi H. Efficacy of poly glycolic acid (PGA)/ collagen composite nanofibre scaffold on cell migration and neovascularization in vivo skin defect model. J Plast Surg Hand Surg. 2013 Dec; 47(6):498-502. doi: https://doi.org/10.3109/2000656X.2013.788507.

Hajiali H, Shahgasempour S, Naimi-Jamal MR, Peirovi H. Electrospun PGA/Gelatin nanofibrous scaffolds and their potential application in vascular tissue engineering. Int J Nanomed. 2011 Jan;6:2133-41. doi: https://dx.doi.org/10.2147%2FIJN.S24312.

Matl FD, Zlotnyk J, Obermeier A, Friess W, Vogt S, Buchner H et al. New anti-infective coatings of surgical sutures based on combination of antiseptics and fatty acids. J Biomater Sci Polym Ed. 2009 Jan; 20(10):1439-49. doi: https://doi.org/10.1163/092050609X12457418973107.

Meng ZX, Li HF, Sun ZZ, Zheng W, Zheng YF. Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2013 Mar;33(2):699-706. doi: https://doi.org/10.1016/j.msec.2012.10.021.

Zhao W, Li J, Jin K, Liu W, Qiu X, Li C. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Mater Sci Eng C Mater Biol Appl. 2016 Feb;59:1181-94. doi: https://doi.org/10.1016/j.msec.2015.11.026.

Ru C, Wang F, Pang M, Sun L, Chen R, Sun Y. Suspended, Shrinkage free, electrospun PLGA nanofibrous scaffold for skin tissue engineering. ACS Appl Mater Interfaces. 2015 May; 7(20):10872-7. doi: https://doi.org/10.1021/acsami.5b01953.

Chen H, Peng Y, Wu S, Tan LP. Electrospun 3D fibrous scaffolds for chronic wound repair. Materials. 2016 Apr; 9 (4):272. doi: https://doi.org/10.3390/ma9040272.

Han J, Lazarovici P, Pomerantz C, Chen X, Wei Y, Lelkes PI. Co-electrospun Blends of PLGA, gelatin, and elastin as potential Non thrombogenic scaffolds for vascular tissue engineering. Biomacromolecules. 2011 Feb;12:399-408. doi: https://doi.org/10.1021/bm101149r.

Uematsu K, Hatori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y et al. Cartilage regeneration using mesenchymal stem cells and a three dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials. 2005 Jul;26(20):4273-9. doi: https://doi.org/10.1016/j.biomaterials.2004.10.037.

Kampmann A, Lindhorst D, Schumann P, Zimmerer R, Kokemuller H, Rucker M et al. Additive effect of mesenchymal stem cells and VEGF to vascularization of PLGA scaffolds. Microvas Res. 2013 Nov; 90:71-9. doi: https://doi.org/10.1016/j.mvr.2013.07.006.

Janik H, Marzec M. A review: Fabrication of porous polyurethane scaffolds. Mater Sci Eng C Mater Biol Appl. 2015 Mar;48:586-91. doi: https://doi.org/10.1016/j.msec.2014.12.037.

Ramrattan NN, Heijkants RG, van Tienen TG, Schouten AJ, Veth RP, Buma P. Assessment of tissue ingrowth rates in polyurethane scaffolds for tissue engineering. Tissue Eng. 2005 Jul-Aug;11(7-8):1212-23.

Ryszkowska JL, Auguscik M, Sheikh A, Boccaccini AR. Biodegradable polyurethane composite scaffolds containing Bioglass for Bone tissue Engineering. Compos Sci Technol. 2010 Nov;70(13):1894-908. doi: https://doi.org/10.1016/j.compscitech.2010.05.011.

Dong Z, Li Y, Zou Q. Degradation and biocompatibility of porous-nanohydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl Surf Sci. 2009 Apr;255(12):6087-91. doi: https://doi.org/10.1016/j.apsusc.2009.01.083.

Phan TT, Lim IJ, Tan EK, Bay BH, Lee ST. Evaluation of cell culture on the polyurethane-based membrane (Tegaderm): implication for tissue engineering of skin. Cell Tissue Bank. 2005;6(2):91-7.

Sharifpoor S, Labow RS, Santerre JP. Synthesis and characterization of degradable polar hydrophobic ionic polyurethane scaffolds for vascular tissue engineering applications. Biomacromolecules. 2009 Oct;10 (10):2729-39. doi: https://doi.org/10.1021/bm9004194.

AI-Munaiied AA, Plunkett NA, Gleeson JP, Weber T, Jungreuthmayer C, Levingstone T et al. Development of biomimetic collagen-hydroxyapatite composite scaffold for bone tissue engineering using a SBF immersion technique. J Biomed Mater Res B Appl Biomater. 2009 Aug;90(2):584-91. doi: https://doi.org/10.1002/jbm.b.31320.

Chan EC, Kuo S, Kong AM, Morrison WA, Dusting GJ, Mitchell GM et al. Three dimensional collagen scaffold promotes intrinsic vascularization for tissue engineering applications. Plos ONE. 2016 Feb;11(2): e0149799. doi: https://dx.doi.org/10.1371%2Fjournal.pone.0149799.

Rodrigues CVM, Serricella P, Linhares ABR, Guerdes RM, Borojevic R, Rossi MA et al. Characterization of bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials. 2003 Dec; 24(27):4987-97. doi: https://doi.org/10.1016/S0142-9612(03)00410-1.

Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003 Nov; 24(26):4833-41. doi: https://doi.org/10.1016/S0142-9612(03)00374-0.

Hoyer B, Bernhardt A, Lode A, Heinemann S, Sewing J, Klinger M. Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomater. 2014 Feb;10 (2):883-92. doi: https://doi.org/10.1016/j.actbio.2013.10.022.

Yuan T, Zhang L, Li K, Fan H, Fan Y, Liang J et al. Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering. J Biomed Mater Res B Appl Biomater. 2014 Feb;102(2):337-44. doi: https://doi.org/10.1002/jbm.b.33011.

Liu X, Smith LA, Hu J, Ma PX. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials. 2009 Apr; 30(12):2252-8. doi: https://doi.org/10.1016/j.biomaterials.2008.12.068.

Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S et al. Evaluation of electrospun PCL/ Gelatin nanofibrous scaffold for wound healing and dermal layered reconstitution. Acta Biomater. 2007 May; 3(3):321-30. doi: https://doi.org/10.1016/j.actbio.2007.01.002.

Liu Y, Chan-Mark MB. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials. 2009 Jan;30(2):196-207. doi: https://doi.org/10.1016/j.biomaterials.2008.09.041.

Morimoto N, Kakudo N, Matsui M, Ogura T, Hara T, Suzuki K et al. Exploratory clinical trial of combination wound therapy with a gelatin sheet and platelet rich plasma in patients with chronic skin ulcers: study protocol. BMJ Open. 2015 May; 5(5):e007733. doi: http://dx.doi.org/10.1136/bmjopen-2015-007733.

Deng T, Huang S, Zhou S, He L, Jin Y. Cartilage regeneration using a novel gelatin-chondriotin-hyaluronan hybrid scaffold containing bFGF- impregnated microspheres. J Microencapsul. 2007 Mar;24(2):163-74. doi: https://doi.org/10.1080/02652040701233523.

Zhao G, Liu F, Lan S, Li P, Wang L, Kou J et al. Large-scale expansion of Wharton’s jelly-derived mesenchymal stem cells on gelatin microbeads, with retention of self-renewal and multipotency characteristics and the capacity for enhancing skin wound healing. Stem cell Res ther. 2015 Mar;6(1)1. doi: https://doi.org/10.1186/s13287-015-0031-3.

Sun J, Tan H. Alginate based biomaterials for Regenerative Medicine Applications. Materials. 2013 Mar; 6 (4):1285-309. doi: https://doi.org/10.3390/ma6041285.

Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S. Bioprinting three dimensional cell-laden tissue constructs with controllable degradadtion. Scientific Reports. 2016 Apr; 6. 24474. doi: https://doi.org/10.1038/srep24474.

Dvir-Ginzberg M, Gamlieli-Bonshtein I, Agbaria R, Cohen S. Liver tissue engineering within Alginate scaffolds: Effect of cell seeding density on hepatocyte viability, morphology and function. Tissue Eng. 2003;9(4):757-66. doi: https://doi.org/10.1089/107632703768247430.

Pusateri E, McCarthy SJ, Gregory KW, Harris RA, Cardenas L, Mcmanus AT et al. Effect of a chitosan-based hemostatic dressing on blood loss and survival in a model of severe venous hemorrhage and hepatic injury in swine. J Trauma. 2003 Jan;54(1):177–82. doi: https://doi.org/10.1097/00005373-200301000-00023.

Peng H, Yin Z, Liu H, Chen X, Feng B, Yuan H et al. Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of nMSCs. Nanotechnology. 2012 Dec; 23(48):485102. doi: https://doi.org/10.1088/0957-4484/23/48/485102.

Boucard N, Viton C, Agay D, Mari E, Roger T, Chancerelle Y et al. The use of physical hydrogels of chitosan for skin regeneration following third degree burns. Biomaterials. 2007 Aug; 28(24):3478–88. doi: https://doi.org/10.1016/j.biomaterials.2007.04.021.

Han CM, Zhang LP, Sun JZ, Shi HF, Zhou J, Gao CY. Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering. J Zhejiang Univ Sci B. 2010 Jul; 11(7)524–30. doi: https://doi.org/10.1631/jzus.B0900400.

Tan H, Chu CR, Payne KA, Marra KG. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009 May;30:2499-506. doi: https://doi.org/10.1016/j.biomaterials.2008.12.080.

Zhu C, Fan D, Duan Z, Xue W, Shang L, Chen F et al. Initial investigation of novel human-like collagen/ chitosan scaffold for vascular tissue engineering. J Biomed Mater Res A. 2009 Jun; 89(3):829-40. doi: https://doi.org/10.1002/jbm.a.32256.

Osathanon T, Linnes ML, Rajachar RM, Ratner BD, Somerman MJ, Giachelli CM. Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials. 2008 Oct; 29 (30):4091-9. doi: https://doi.org/10.1016/j.biomaterials.2008.06.030.

Karp JM, Sarraf F, Shoichet MS, Davies JE. Fibrin-filled scaffolds for bone-tissue engineering: An in vivo study. J Biomed Mater Res A. 2004 Oct 1;71(1):162-71.

Shaikh FM, Callanan A, Kavanagh EG, Burke PE, Grace PA, Mcgloughlin TM. Fibrin: A natural biodegradable scaffold in vascular tissue engineering. Cells Tissues Organs. 2008 Jun;188 (4):333-46. doi: https://doi.org/10.1159/000139772.

Chung E, Rybalko VY, Hsieh PL, Leal SL, Samano MA, Willauer AN, Stowers RS, Natesan S, Zamora DO, Christy RJ, Suggs LJ. Fibrin-based stem cell containing scaffold improves the dynamics of burn wound healing. Wound Repair Regen. 2016 Sep;24(5):810-819. doi: https://doi.org/10.1111/wrr.12459. Epub 2016 Sep 13.

Kolehmainen K, Willerth SM. Preparation of 3D fibrin scaffolds for stem cell culture applications. J Vis Exp. 2012 Mar 2;(61):e3641. doi: https://doi.org/10.3791/3641.

Li Y, Meng H, Liu Y, Lee BP. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. ScientificWorldJournal. 2015;2015:685690. doi: https://doi.org/10.1155/2015/685690. Epub 2015 Mar 17.

Fagerholm P, Lagali NS, Ong JA, Merrett K, Jackson WB, Polarek JW et al. Stable corneal regeneration four years after implantation of a cell free recombinant human collagen scaffold. Biomaterials. 2014 Mar; 35(8):2420-7. doi: https://doi.org/10.1016/j.biomaterials.2013.11.079.

Ashley WW Jr, Weatherly T, Park TS. Collagen nerve guides for surgical repair of brachial plexus birth injury. J Neurosurg. 2006 Dec;105(6 Suppl):452-6.

Dienstknecht T, Klein S, Vykoukal J, Gehmert S, Koller M, Gosau M et al. Type I collagen nerve conduits for median nerve repairs in the forearm. J Hand Surg Am. 2013 Jun;38(6):1119-24. doi: https://doi.org/10.1016/j.jhsa.2013.03.028.

Farole A, Jamal BT. A bioabsorbable collagen nerve cuff (NeuraGen) for repair of lingual and inferior alveolar nerve injuries: a case series. J Oral Maxillofac Surg. 2008 Oct;66(10):2058-62. doi: https://doi.org/10.1016/j.joms.2008.06.017.

Taras JS, Jacoby SM, Lincoski CJ. Reconstruction of digital nerves with collagen conduits. J Hand Surg Am. 2011 Sep;36 (9):1441-6. doi: https://doi.org/10.1016/j.jhsa.2011.06.009.

Sharma S, Mittal N. A comparative evaluation of natural and artificial scaffolds in regenerative endodontics: A clinical study. Saudi Endod J. 2016 Jan;6(1):9-15. doi: http://www.saudiendodj.com/text.asp?2016/6/1/9/171995.

Ochi M, Uchio Y, Kawasaki K, Wakitani S, Iwasa J. Transplantation of cartilage like tissue made by tissue engineering in the treatment of cartilage defects of the knee. J Bone Joint Surg Br. 2002 May;84(4):571-8. doi: https://doi.org/10.1302/0301-620X.84B4.0840571.

Singh O, Gupta SS, Soni M, Moses S, Shukla S, Mathur RK. Collagen dressing versus conventional dressings in Burn and chronic wounds: A retrospective study. J Cutan Aesthet Surg. 2011 Jan;4(1):12–6. doi: http://www.jcasonline.com/text.asp?2011/4/1/12/79180.

Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as biologic scaffold material: structure and function. Acta Biomater. 2009 Jan;5(1):1–13. doi: https://doi.org/10.1016/j.actbio.2008.09.013.

Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000 Nov; 21(22):2215–31. doi: https://doi.org/10.1016/S0142-9612(00)00148-4.

Uchimura E, Sawa Y, Taketani S, Yamanaka Y, Hara M, Matsuda H. Novel method of preparing acellular cardiovascular grafts by decellularization with poly(ethylene glycol). J Biomed Mater Res A. 2003 Dec; 67(3):834–7. doi: https://doi.org/10.1002/jbm.a.10097.

Chen RN, Ho HO, Tsai YT, Sheu MT. Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials. 2004 Jun;25(13):2679–86. doi: https://doi.org/10.1016/j.biomaterials.2003.09.070.

Hudson TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng. 2004 Sep;10(9-10):1346–58. doi: https://doi.org/10.1089/ten.2004.10.1641.

Kim BS, Yoo JJ, Atala A. Peripheral nerve regeneration using acellular nerve grafts. J Biomed Mater Res. 2004 Feb;68(2):201–9. doi: https://doi.org/10.1002/jbm.a.10045

Cartmell JS, Dunn MG. Effect of chemical treatment on tendon cellularity and mechanical properties. J Biomed Mater Res. 2000 Jan;49(1):134–40. doi: https://doi.org/10.1002/(SICI)1097-4636(200001)49:1%3C134::AID-JBM17%3E3.0.CO;2-D.

Badylak SF, Tullius R, Kokini K, Shelbourne KD, Klootwyk T, Voytik SL et al. The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J Biomed Mater Res. 1995 Aug;29(8):977–85. doi: https://doi.org/10.1002/jbm.820290809.

Kropp BP, Eppley BL, Prevel CD, Rippy MK, Harruff RC, Badylak SF et al. Experimental assessment of small intestinal submucosa as a bladder wall substitute. Urology 1995 Sep;46(3):396–400. doi: https://doi.org/10.1016/S0090-4295(99)80227-1.

Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cells Mater. 2008 Apr;15:88-99.

Shimmura S, Shimazaki J, Ohasi Y, Tsubota K. Anti inflammatory effects of amniotic membrane transplantation in ocular surface disorders. Cornea. 2001 May; 20(4):408-13.

Wichayacoop T, Briksawan P, Tuntivanich P, Yibchok-Anun S. Anti-inflammatory effects of topical supernatant from human amniotic membrane cell culture on canine deep corneal ulcer after human amniotic membrane transplantation. Vet Ophthalmol. 2009 Jan;12(1):28-35. doi: https://doi.org/10.1111/j.1463-5224.2009.00670.x.

Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F. Identification of antiangiogenic and anti-inflammatory proteins in human amniotic membrane. Cornea 2000 May;19(3):348-52. doi: https://doi.org/10.1097/00003226-200005000-00018.

He H, Li W, Chen SY, Zhang S, Chen Y, Hayashida Y. Suppression of activation and induction of apoptosis in RAW264.7 cells by amniotic membrane extract. Invest Ophthalmol Vis Sci. 2008 Oct;49 (10):4468-75. doi: https://doi.org/10.1167/iovs.08-1781.

Hori J, Wang M, Kamiya K, Takahashi H, Sakuragawa N. Immunological characteristics of amniotic epithelium. Cornea. 2006 Dec; 25:S53-8. doi: https://doi.org/10.1097/01.ico.0000247214.31757.5c.

Lee SB, Li DQ, Tan DTH, Meller D, Tseng SCG. Suppression of TGF-β signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane. Curr Eye Res. 2000 Apr; 20(4):325-34. doi: https://doi.org/10.1076/0271-3683(200004)2041-5FT325.

Tseng SCG, Li DQ, Ma X. Suppression of transforming growth factor-beta isoforms, TGF-β receptor type II and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol. 1999 Jun;179(3):325-35. doi: https://doi.org/10.1002/(SICI)1097-4652(199906)179:3%3C325::AID-JCP10%3E3.0.CO;2-X.

Koob TJ, Lim JJ, Massee M, Zabek N, Rennert R, Gurtner G et al. Angiogenic properties of dehydrated human amnion/chorion allografts: therapeutic potential of soft tissue repair and regeneration. Vasc Cell. 2014 May;6:10. doi: https://dx.doi.org/10.1186/2045-824X-6-10.

Niknejad H, Paeini-Vayghan G, Tehrani FA, Khayat-Khoei M, Peirovi H. Side dependent effects of human amnion on angiogenesis. Placenta. 2013 Apr;34 (4):340-5. doi: https://doi.org/10.1016/j.placenta.2013.02.001.

Kjaergaard N, Hein M, Hyttel L, Helmig RB, Schonheyder HC, Uldbjerg N et al. Antibacterial properties of human amnion and chorion in vitro. Eur J Obstet Gyn RB. 2001 Feb;94(2):224–9. doi: https://doi.org/10.1016/S0301-2115(00)00345-6.

Parthasarathy M, Sasikala R, Gunasekaran P, Raja J. Antimicrobial activity of human amnion and chorionic membrane. J Acad Indus Res. 2014 Mar;2 (10):545-7.

Tehrani FA, Ahmadiani A, Niknejad H. The effects of preservation procedures on antibacterial property of amniotic membrane. Cryobiology. 2013 Dec;67(3):293-8. doi: https://doi.org/10.1016/j.cryobiol.2013.08.010.

Gicquel JJ, Bejjani RA, Ellies P, Mercie M, Dighiero P. Amniotic membrane transplantation in severe bacterial keratitis. Cornea. 2007 Jan;26(1):27-33. doi: https://doi.org/10.1097/ICO.0b013e31802b28df.

Kim JS, Kim JC, Hahn TW, Park WC. Amniotic membrane transplantation in infectious corneal ulcer. Cornea. 2001 Oct;20(7):720-6. doi: https://doi.org/10.1097/00003226-200110000-00010.

Sheha H, Liang L, Li J, Tseng SC. Sutureless amniotic membrane transplantation for severe bacterial keratitis. Cornea. 2009 Dec;28(10):1118-23. doi: https://doi.org/10.1097/ICO.0b013e3181a2abad.

Hanada K, Shimazaki J, Shimmura S, Tsubota K. Multilayered amniotic membrane transplantation for severe ulceration of the cornea and sclera. Am J Ophthalmol. 2001 Mar;131(3):324-31. doi: https://doi.org/10.1016/S0002-9394(00)00825-4.

Solomon A, Meller D, Prabhasawat P, John T, Espana EM, Steuhl KP et al. Amniotic membrane grafts for nontraumatic corneal perforations, descemetoceles and deep ulcers. Ophthalmol. 2002 Apr;109(4):694-703. doi: https://doi.org/10.1016/S0161-6420(01)01032-6.

Rodriguez Aries MT, Tourino R, Lopez-Valladares MJ, Gude F. Multilayer amniotic membrane transplantation in the treatment of corneal perforations. Cornea. 2004 Aug;23(6):577-83. doi: https://doi.org/10.1097/01.ico.0000121709.58571.12

Prabhasawat P, Tesavibul N, Komolsuradej W. Single and Multilayer amniotic membrane transplantation for persistent corneal epithelial defect with and without stromal thinning and perforation. Br J Ophthalmol. 2001 Dec;85(12):1455-63. doi: http://dx.doi.org/10.1136/bjo.85.12.1455.

Seitz B, Das S, Sauer R, Mena D, Hofmann-Rumelt C. Amniotic membrane transplantation for persistent corneal epithelial defects in eyes after penetrating keratoplasty. Eye 2009 Apr;23(4):840-8. doi: https://doi.org/10.1038/eye.2008.140.

Stefaniu GI, Chiotoroiu SM, Secureanu FA, Purcarea VL, Zemba M. Use of amniotic membrane in bullous keratopathy palliative care. J Med Life. 2014;7(Spec Iss 2):88-91.

Mrukwa-Kominek E, Gierek-ciaciura S, Rokita-wala I, Szymkowiak M. Use of amniotic membrane transplantation for treating bullous keratopathy. Klin Oczna. 2002;104(1):41-6.

Anderson DF, Ellies P, Pires RT, Tseng SC. Amniotic membrane transplantation for partial limbal stem cell deficiency. Br J Ophthalmol. 2001 May;85(5):567-75. doi: http://dx.doi.org/10.1136/bjo.85.5.567.

Gomes JA, dos Santos MS, Cunha MC, Mascaro VL, Barros JN, de Sousa LB. Amniotic membrane transplantation for partial and total limbal stem cell deficiency secondary to chemical burn. Ophthalmol. 2003 Mar;110(3):466-73. doi: https://doi.org/10.1016/S0161-6420(02)01888-2.

Katbaab A, Ardekani HA, Khoshniyat H, Hosseini HJ. Amniotic membrane transplantation for primary pterygium surgery. J Ophthalmic Vis Res. 2008 Jan;3(1):23–7.

Meller D, Maskin SL, Pires RTF, Tseng SCG. Amniotic membrane transplantation for symptomatic conjunctivochalasis refractory to medical treatments. Cornea. 2000 Nov;19(6):796-803. doi: https://doi.org/10.1097/00003226-200011000-00008.

Georgiadis NS, Terzidou CD. Epiphora caused by conjunctivochalasis: treatment with transplantation of preserved amniotic membrane. Cornea. 2001 Aug;20(6):619-21.

Escandarlou M, Azimi M, Rabbie S, Rabbit M. The healing effect of Amniotic membrane in burn patients. World J Plast Surg. 2016 Jan;5(1):39-44.

Shah AP. Using membrane amniotic membrane allografts in the treatment of neuropathic foot ulcers. J Am Podiatr Med Assoc. 2014 Mar;104(2):198-202. doi: https://doi.org/10.7547/0003-0538-104.2.198.

Zelen CM, Serena TE, Denoziere G, Fetterolf DE. A prospective randomized comparative parallel study of amniotic membrane wound graft in the management of diabetic foot ulcers. Int Wound J. 2013 Oct;10 (5):502-7. doi: https://doi.org/10.1111/iwj.12097.

Hanumanthappa MB, Gopinathan S, Guruprasad RD. Amniotic membrane dressing versus conventional dressing in lower limb varicose ulcer: A prospective comparative study. Int J Biol Med Res. 2012;3 (2):1616-20.

Mrugala A, Sui A, Plummer M, Altman I, Papineau E, Frandsen D. Amniotic membrane is a potential regenerative option for chronic non healing wounds: a report of five cases receiving dehydrated human amnion/chorion membrane allograft. Int Wound J. 2016 Aug;13(4):485-92. doi: https://doi.org/10.1111/iwj.12458.

Duarte IG, Duval-Araujo I. Amniotic membrane as a biological dressing in infected wound healing in rabbits. Acta Cir Bras. 2014 May;29(5):334-9. doi: http://dx.doi.org/10.1590/S0102-86502014000500008.

Kannaiyan J, Suriyanarayana S, Palaniyandi M, Rajangam B, Chhabra H, Pandey A. Amniotic membrane as a scaffold in wound healing and diabetic foot ulcer: an experimental technique and recommendations. Int J Res Med Sci. 2016;4(8):3654-60. doi: http://dx.doi.org/10.18203/2320-6012.ijrms20162206.

Gular R, Ercan MT, Ulutuncel N, Devrim H, Uran N. Measurement of blood flow by the 133Xe clearance technique to grafts of amnion used in vestibuloplasty. Br J Oral and Maxillofac Surg. 1997 Aug;35(4): 280–3. doi: https://doi.org/10.1016/S0266-4356(97)90048-6.

Wallace S. Radiographic and histomorphometric analysis of amniotic allograft tissue in ridge preservation: a case report. The Journal of Implant & Advanced Clinical Dentistry. 2010;2:49–55.

Sikder M, Khan AA, Ferdousi F, Pradhan L, Tareq BH. Reconstruction of oralmucosal defect with Oven Dried Human Amniotic Membrane graft: a case report. Bangladesh Journal of Medical Science. 2010 Jul;9(3):170–3. doi: https://doi.org/10.3329/bjms.v9i3.6480.

Sham ME, Sultana N. Biological wound dressing—role of amniotic membrane. Int J Dent Clin. 2011 Aug; 3(3):71–2.

Singh H, Singh H. Bioactive amnion as a guided tissue regeneration (GTR) membrane for treatment of isolated gingival recession. A case report. Indian Journal of Dentistry. 2013 Jun;4(2):110–3. doi: https://doi.org/10.1016/j.ijd.2012.12.007.

Holtzclaw DJ, Toscano NJ. Amnion-chorion allograft barrier used for guided tissue regeneration treatment of periodontal intrabony defects: a retrospective observational report. Clinic Adv Periodontics. 2013 Aug; 3(3):131–7. doi: https://doi.org/10.1902/cap.2012.110110.

Lindenmair A, Nurnberger S, Stadler G, Meinl A, Hackl C, Eibl J et al. Intact human amniotic membrane differentiated towards the chondrogenic lineage. Cell Tissue Bank. 2014 Jun;15(2):213-25. doi: https://doi.org/10.1007/s10561-014-9454-9.

Liu PF, Guo L, Zhao DW, Zhang ZJ, Kang K, Zhu RP et al. Study of human acellular amniotic membrane loading bone marrow mesenchymal stem cells in repair of articular cartilage defect in rabbits. Genet Mol Res. 2014 Sep;13(3):7992-8001. doi: http://dx.doi.org/10.4238/2014.September.29.12.

Nogami M, Tsuno H, Koike C, Okabe M, Yoshida T, Seki S et al. Isolation and characterization of human amniotic mesenchymal stem cells and their chondrogenic differentiation. Transplantation. 2012 Jun; 93(12):1221-8. doi: https://doi.org/10.1097/TP.0b013e3182529b76.

Krishnamurithy G, Shilpa PN, Ahmad RE, Sulaiman S, Ng CL, Kamarul T. Human amniotic membrane as a chondrocyte carrier vehicle/substrate: in vitro study. J Biomed Mater Res A. 2011 Dec 1;99(3):500-6. doi: https://doi.org/10.1002/jbm.a.33184. Epub 2011 Sep 12.

Kueckelhaus M, Philip J, Kamel RA, Canseco JA, Hackl F, Kiwanuka E et al. Sustained release of amnion-derived cellular cytokine solution facilitates Achilles tendon healing in rats. Eplasty. 2014 Aug;14:e29.

Ozboluk S, Ozkan Y, Ozturk A, Gul N, Ozdemir RM, Yanik K. The effects of human amniotic membrane and periosteal autograft on tendon healing: experimental study in rabbits. J Hand Surg Eur. 2010 May;35 (4):262-8. doi: https://doi.org/10.1177%2F1753193409337961.

Hanselman AE, Tidwell JE, Santrock RD. Cryopreserved human amniotic membrane injection for plantar fasciitis: a randomized, controlled, double-blind pilot study. Foot Ankle Int. 2015 Feb;36(2):151-8. doi: https://doi.org/10.1177%2F1071100714552824.

Zelen CM, Poka A, Andrews J. Prospective, randomized, blinded, comparative study of injectable micronized dehydrated amniotic/chorionic membrane allograft for plantar fasciitis—a feasibility study. Foot Ankle Int. 2013 Oct;34(10):1332-9. doi: https://doi.org/10.1177%2F1071100713502179.

Biological and synthetic scaffold: an extra cellular matrix for constructive tissue engineering
CITATION
DOI: 10.17511/ijmrr.2016.i10.27
Published: 2016-10-31
How to Cite
1.
Kannaiyan J, Chhabra H, Palaniyandi M, Rajangam B, Narayanan S S, Pandey A. Biological and synthetic scaffold: an extra cellular matrix for constructive tissue engineering. Int J Med Res Rev [Internet]. 2016Oct.31 [cited 2024Nov.22];4(10):1882-96. Available from: https://ijmrr.medresearch.in/index.php/ijmrr/article/view/740
Section
Review Article