Microbiological study of neonatal septicemia with special reference to metallo-beta-lactamase producing pseudomonas aeruginosa

  • Dr Varun Dwivedi Phd Research Scholer, Dr. Ekta Agrawal, Assistant Professor, Department Of Microbiology, CIMS, Bilaspur, C.G., India
  • Dr. Ekta Agrawal Assistant Professor, Department Of Microbiology, CIMS, Bilaspur, C.G., India
  • Dr. Ramanesh Murthy Professor and HOD, Department Of Microbiology, CIMS, Bilaspur (C.G.), India
  • Dr. Sagarika Pradhan Assistant. Professor Department Of Microbiology, CIMS, Bilaspur (C.G.), India
Keywords: Metallo-beta-lactamase, Neonatal Sepsis, Pseudomonas Aeruginosa

Abstract

Introduction: Metallo-beta-lactamase (MβL) producing Pseudomonas aeruginosa has emerged as a potential threat in cases of neonatal septicemia and poses great therapeutic challenge for physicians treating such infections. The emergence, selective multiplication & dissemination of antibacterial resistance are a serious global problem.

Methods: This study was conducted with the objective to know the microbiological profile of neonatal septicemia cases and to examine the incidence of MβL producing strains among multidrug resistant (MDR) Pseudomonas aeruginosa from the suspected cases of neonatal sepsis between January 2012 – December 2014. A total of 994 cases admitted with the suspicion of neonatal sepsis were investigated. 295 (29.7%) isolates were obtained from the blood cultures of neonates. The isolates were identified and tested for the susceptibility to various antimicrobial agents.

Results: Pseudomonas aeruginosa with 116 (48.3%) isolation among 240 Gram negative isolates was the predominant pathogen in our study. All the 74 (63.8%) multidrug resistant P. aeruginosa isolates were screened initially for Imipenem resistance, which were further tested for the presence of MβL by Imipenem-ethylene diamine tetraacetic acid (EDTA) disc method. MβL production was seen in 20 (71.4%) of the 28 Imipenem-resistant Pseudomonas aeruginosa isolates.

Conclusion:It creates a great therapeutic problem as it may spread rapidly to various other species of Gram-negative bacilli. Therefore, to prevent the further spread of MβL producers, it is essential to rapidly detect MβL-positive isolates.

Downloads

Download data is not yet available.

References

1. Poole K. Overcoming multidrug resistance in gram negative bacteria. Curr Opin Investig Drugs. 2003 Feb;4(2):128-39. [PubMed]

2. Cornaglia G. Fighting infections due to multidrug-resistant Gram positive pathogen. Clin Microbiol Infect. 2009 Mar; 15(3): 209-11.doi:10.1111/j.1469-0691.2009.02737.x [PubMed]

3. Tan TT. “Future” threat of gram-negative resistance in Singapore. Ann Acad Med Singapore 2008 Oct;37(10): 884-90. [PubMed]

4. Baiden F, Owusu-Agyei S, Webstar J, Chandramohan D. The need for new antibiotics. Lancet. 2010 Feb; 375(9715): 637-38.doi;10.1016/S0140-6736(10)60265-6. [PubMed]

5. Vento S, Cainelli F. The need for new antibiotics. Lancet. 2010 Feb; 375(9715): 637. doi:10.1016/S0140-6736(10)60264-4. [PubMed]

6. Wise R, Piddock L. The need for new antibiotics. Lancet. 2010 Feb; 375(9715): 638.doi:10.1016/S0140- 6736(10)60266-8. [PubMed]

7. Neuhauser MM, Weinstein RA, Rydman R, Danziger LH, Karam G, Quinn JP. Antibiotic Resistance among gram negative bacilli in US intensive care units implications for fluoroquinolone use. JAMA. 2003 Feb; 289(7): 885-88. [PubMed]

8. Sharma A, Kutty CVK, Sabharwal U, Rathee S, Mohan H. Evaluation of sepsis screen for diagnosis of neonatal septicemia. Indian J Pediatr. 1993 Jul-Aug;60(4): 559-63. [PubMed]

9. Barton LL, Lustiq RH, Fong CT, Walentic CA. Neonatal septicemia due to Pseudomonas aeruginosa. Am Fam Physician. 1986 Mar;33(3): 147-51. [PubMed]

10. Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference:Definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005 Jan; 6(1):2-8.

11. B.A. forbes, D.F. Sahm, A.S. weissfeld. Diagnostic Microbiology, Bailey & Scott’s. 2007;12:778-97.

12. Collee JG, Duguid JP, Fraser AG, Marmion BP, Simmons A. Laboratory strategy in diagnosis of infective syndromes. In: Collee JG, Fraser AG, Marmion BP, Simmons AC, editors. Mackie and McCartney Practical Medical Microbiology. 14th Ed. Singapore: Churchill Livingstone; 1996.p.53-94.

13. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disc method. Tech Bull Regist Med Technol.1966 Mar;36(3):49-52. [PubMed]

14. Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-β-lactamases producing clinical isolates of Pseudomonas spp. And Acinetobacter spp. J Clin Microbiol. 2002 Oct; 40(10): 3798-801. [PubMed]

15. Clare Franklin, Lisa Liolios, and Anton Y. Peleg. Phenotypic Detection of Carbapenem-Susceptible Metallo-β- Lactamase-Producing Gram-Negative Bacilli in the Clinical Laboratory. J Clin Microbiol. 2006 Sep; 44(9): 3139–3144. [PubMed]

16. De A, Saraswathi K, Gogate A, Fernandes AR. Bacteremia in hospitalized children-A one year prospective study. Indian J Med Microbiol. 1995;13: 72-5.

17. Sharma M, Goel N, Chaudhary U, Aggarwal R, Arora DR. Bacteremia in children. Indian J Pediatr. 2002 Dec;69(12): 1029-32. [PubMed]

18. Kulkarni A, Vigneswaran R. Acquired neonatal sepsis: Are surveillance cultures helpful? Asian J Pediatr Pract. 2000;4: 11-3. [PubMed]

19. Bhattacharjee A, Sen MR. Prakash P, Gaur A, Anupurba S. Increased prevalence of extended spectrum beta lactamase producers in neonatal septicemic cases at a tertiary referral hospital. Indian J Med Microbiol. 2008 Oct-Dec; 26(4): 356-60.

20. Moniri R, Mosayebi Z, Movahedian AH, Mousavi GA. Emergence of multidrug resistant Pseudomonas aeruginosa isolates in neonatal septicemia. J Infect Dis Antimicrob Agents. 2005; 22: 39-44.

21. Kuciikates E, Kocazeybek B. High resistance rate against 15 different antibiotics in aerobic Gram-negative bacterial isolates of cardiology intensive care unit patients. Indian J Med Microbiol. 2002; 20: 208-10.

22. Okesola AO, Oni AA. Antimicrobial resistance among common bacterial pathogens in South-west Nigeria. American Eurasian J Agri Env Sci. 2009; 5: 327-30.

23. De A, Deodhar LP. Sensitivity of common bacterial isolates to netilmycin: A potent aminoglycoside. Indian Practitioner. 1992; 45: 599.

24. Sarkar B, Biswas D, Prasad R. A. clinic microbiological study on the importance of Pseudomonas in nosocomially infected ICU patients with special reference to metallo-β-lactamase production. Indian J Pathol Microbiol. 2006;49: 44-6.

25. Murthy M, Patel S, Patel KK, Murthy R. Emergence of Carbapenem resistance among isolates of Pseudomonas aeruginosa in diabetes patients. J. Microb. World.2010; 12 (1):87-91.
CITATION
DOI: 10.17511/ijmrr.2015.i6.120
Published: 2015-07-31
How to Cite
1.
Dwivedi V, Agrawal E, Murthy R, Pradhan S. Microbiological study of neonatal septicemia with special reference to metallo-beta-lactamase producing pseudomonas aeruginosa. Int J Med Res Rev [Internet]. 2015Jul.31 [cited 2024Nov.8];3(6):618-22. Available from: https://ijmrr.medresearch.in/index.php/ijmrr/article/view/291
Section
Original Article