Crowdsourcing applications addressing diseases and public health: a perspective on COVID-19 infestation

  • Mr. Debangshu Mallick Researcher and Academician, Department of Computer Science and Engineering, The University of Calcutta (CU), Kolkata, West Bengal, India https://orcid.org/0000-0001-8379-2231
  • Dr. Upasana Datta Advisory board member, Department of Research and Development, Uttoran Foundation, Kolkata, West Bengal, India
Keywords: Crowdsourcing, Public health care, Infectious disease, Computational biology, COVID-19, Data mining, Health tracker apps, Pandemic

Abstract

The spread of the COVID-19 disease with an unprecedented speed into humans, and the global scale of its occurrence over multiple geographic locations, since December 2019, in Wuhan, China, has sparked off extensive confusion and debate in public health, giving it the status of a pandemic. The inability of restraining the outbreak in the early stages, has multiplied the disease risk to fatal complications. Crowdsourcing technique can conglomerate crowd knowledge for solving problems revolutionizing health care by use of internet sources, data mining, e-health trackers, etc. to collect and assess data faster to the rate of spread of infection, directly from a point source (individual-level). The present study provides perspectives on crowdsourcing in alignment with health care and public health services by critically comparing strengths and challenges with traditional methods. For the same 3 models have been designed by the authors, for improvement in public health care, in the wake of the COVID-19 infestation.

Downloads

Download data is not yet available.

References

Coronavirus disease (COVID-19) [Internet]. WHO.int. 2021 [cited 31 July 2021]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-adetail/coronavirus-disease-covid-19

Andersen, Kristian. "Clock and TMRCA based on 27 genomes." Scripps Research 25 (2020).

Coronavirus, W. H. O. "Dashboard| WHO Coronavirus (COVID-19) Dashboard With Vaccination Data." (2021).

Leung GM, Leung K. Crowdsourcing data to mitigate epidemics. Lancet Digit Health. 2020 Apr;2(4):e156-e157. doi: 10.1016/S2589-7500(20)30055-8.

Sun K, Chen J, Viboud C. Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. Lancet Digit Health. 2020 Apr;2(4):e201-e208. doi: 10.1016/S2589-7500(20)30026-1.

Yuan Q, Nsoesie EO, Lv B, Peng G, Chunara R, Brownstein JS. Monitoring influenza epidemics in china with search query from baidu. PLoS One. 2013 May 30;8(5):e64323. doi: 10.1371/journal.pone.0064323.

Nishiura H, Tsuzuki S, Yuan B, Yamaguchi T, Asai Y. Transmission dynamics of cholera in Yemen, 2017: a real time forecasting. Theor Biol Med Model. 2017 Jul 26;14(1):14. doi: 10.1186/s12976-017-0061-x.

Chunara R, Smolinski MS, Brownstein JS. Why we need crowdsourced data in infectious disease surveillance. Curr Infect Dis Rep. 2013 Aug;15(4):316-9. doi: 10.1007/s11908-013-0341-5.

Urabe CT, Tanaka G, Aihara K, Mimura M. Parameter Scaling for Epidemic Size in a Spatial Epidemic Model with Mobile Individuals. PLoS One. 2016 Dec 14;11(12):e0168127. doi: 10.1371/journal.pone.0168127.

Chunara R, Chhaya V, Bane S, Mekaru SR, Chan EH, Freifeld CC, Brownstein JS. Online reporting for malaria surveillance using micro-monetary incentives, in urban India 2010-2011. Malar J. 2012 Feb 13;11:43. doi: 10.1186/1475-2875-11-43.

Simonsen L, Gog JR, Olson D, Viboud C. Infectious Disease Surveillance in the Big Data Era: Towards Faster and Locally Relevant Systems. J Infect Dis. 2016 Dec 1;214(suppl_4):S380-S385. doi: 10.1093/infdis/jiw376.

Adeniyi, E. A., Awotunde, J. B., Ogundokun, R. O., et al. Kolawole, P. O., Abiodun, M. K., & Adeniyi, A. A. Mobile health application and COVID-19: Opportunities and challenges. Journal of Critical Reviews, 7.15 (2020):3481-3488.

Dugas AF, Jalalpour M, Gel Y, Levin S, Torcaso F, Igusa T, Rothman RE. Influenza forecasting with Google Flu Trends. PLoS One. 2013;8(2):e56176. doi: 10.1371/journal.pone.0056176.

Geneviève LD, Martani A, Wangmo T, Paolotti D, Koppeschaar C, Kjelsø C, et al. Participatory Disease Surveillance Systems: Ethical Framework. J Med Internet Res. 2019 May 23;21(5):e12273. doi: 10.2196/12273.

Peppa M, John Edmunds W, Funk S. Disease severity determines health-seeking behaviour amongst individuals with influenza-like illness in an internet-based cohort. BMC Infect Dis. 2017 Mar 31;17(1):238. doi: 10.1186/s12879-017-2337-5.

Chunara R, Cook SH. Using Digital Data to Protect and Promote the Most Vulnerable in the Fight Against COVID-19. Front Public Health. 2020 Jun 12;8:296. doi: 10.3389/fpubh.2020.00296.

Simonsen L, Gog JR, Olson D, Viboud C. Infectious Disease Surveillance in the Big Data Era: Towards Faster and Locally Relevant Systems. J Infect Dis. 2016 Dec 1;214(suppl_4):S380-S385. doi: 10.1093/infdis/jiw376.

Hossain N, Househ M. Using HealthMap to Analyse Middle East Respiratory Syndrome (MERS) Data. Stud Health Technol Inform. 2016;226:213-6.

Simonsen L, Gog JR, Olson D, Viboud C. Infectious Disease Surveillance in the Big Data Era: Towards Faster and Locally Relevant Systems. J Infect Dis. 2016 Dec 1;214(suppl_4):S380-S385. doi: 10.1093/infdis/jiw376.

Kamel Boulos MN, Wilson JT, Clauson KA. Geospatial blockchain: promises, challenges, and scenarios in health and healthcare. Int J Health Geogr. 2018 Jul 5;17(1):25. doi: 10.1186/s12942-018-0144-x.

Viboud C, Lessler J. The 1918 Influenza Pandemic: Looking Back, Looking Forward. Am J Epidemiol. 2018 Dec 1;187(12):2493-2497. doi: 10.1093/aje/kwy207.

Basu S, Andrews J, Kishore S, Panjabi R, Stuckler D. Comparative performance of private and public healthcare systems in low- and middle-income countries: a systematic review. PLoS Med. 2012;9(6):e1001244. doi: 10.1371/journal.pmed.1001244.

Alert, Global. "Response (GAR): Impact of dengue." World Health Organization.[Online]. Available: http://www.who.int/csr/disease/dengue/impact/en (2013).

Wazny K, Chan KY; Crowdsourcing CHNRI Collaborators. Identifying potential uses of crowdsourcing in global health, conflict, and humanitarian settings: an adapted CHNRI (Child Health and Nutrition Initiative) exercise. J Glob Health. 2018 Dec;8(2):020704. doi: 10.7189/jogh.08.020704.

Valdivia-Granda WA. Biodefense Oriented Genomic-Based Pathogen Classification Systems: Challenges and Opportunities. J Bioterror Biodef. 2012 Mar 16;3(1):1000113. doi: 10.4172/2157-2526.1000113.

Chunara R, Andrews JR, Brownstein JS. Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak. Am J Trop Med Hyg. 2012 Jan;86(1):39-45. doi: 10.4269/ajtmh.2012.11-0597.

Read JM, Edmunds WJ, Riley S, Lessler J, Cummings DA. Close encounters of the infectious kind: methods to measure social mixing behaviour. Epidemiol Infect. 2012 Dec;140(12):2117-30. doi: 10.1017/S0950268812000842.

Dugas AF, Hsieh YH, Levin SR, Pines JM, Mareiniss DP, Mohareb A, Gaydos CA, Perl TM, Rothman RE. Google Flu Trends: correlation with emergency department influenza rates and crowding metrics. Clin Infect Dis. 2012 Feb 15;54(4):463-9. doi: 10.1093/cid/cir883.

Chunara, Rumi, et al. "Flu near you: an online self-reported influenza surveillance system in the USA." Online Journal of Public Health Informatics 5.1 (2013).

Wesolowski A, Eagle N, Noor AM, Snow RW, Buckee CO. Heterogeneous mobile phone ownership and usage patterns in Kenya. PLoS One. 2012;7(4):e35319. doi: 10.1371/journal.pone.0035319.

Fourati S, Talla A, Mahmoudian M, Burkhart JG, Klén R, Henao R, et al. A crowdsourced analysis to identify ab initio molecular signatures predictive of susceptibility to viral infection. Nat Commun. 2018 Oct 24;9(1):4418. doi: 10.1038/s41467-018-06735-8.

Chunara R, Smolinski MS, Brownstein JS. Why we need crowdsourced data in infectious disease surveillance. Curr Infect Dis Rep. 2013 Aug;15(4):316-9. doi: 10.1007/s11908-013-0341-5.

Putri, Aristia Wulandari. The Contribution of UNICEF in Combating Avian Influenza in Central Java, Indonesia (2006-2009). Diss. President University, 2019.

Khare R, Good BM, Leaman R, Su AI, Lu Z. Crowdsourcing in biomedicine: challenges and opportunities. Brief Bioinform. 2016 Jan;17(1):23-32. doi: 10.1093/bib/bbv021.

Brabham DC, Ribisl KM, Kirchner TR, Bernhardt JM. Crowdsourcing applications for public health. Am J Prev Med. 2014 Feb;46(2):179-87. doi: 10.1016/j.amepre.2013.10.016.

Leung GM, Leung K. Crowdsourcing data to mitigate epidemics. Lancet Digit Health. 2020 Apr;2(4):e156-e157. doi: 10.1016/S2589-7500(20)30055-8.

Wazny K. Applications of crowdsourcing in health: an overview. J Glob Health. 2018 Jun;8(1):010502. doi: 10.7189/jogh.08.010502.

McCartney P. Crowdsourcing in healthcare. MCN Am J Matern Child Nurs. 2013 Nov-Dec;38(6):392. doi: 10.1097/NMC.0b013e3182a41571.

Jothi N, Husain W. Data mining in healthcare–a review. Procedia computer science. 2015 Jan 1;72:306-13.

Ko, J. J., Karagiannis, T. S., Tran, M., & Obi, E. N. Crowdsourcing healthcare technology innovation: the use of open competitions to pursue novel healthcare technology solutions. Value in Health, 18.3 (2015): A101.

Odgers DJ, Harpaz R, Callahan A, Stiglic G, Shah NH. Analyzing search behavior of healthcare professionals for drug safety surveillance. Pac Symp Biocomput. 2015:306-17.

Freifeld CC, Brownstein JS, Menone CM, Bao W, Filice R, Kass-Hout T, Dasgupta N. Digital drug safety surveillance: monitoring pharmaceutical products in twitter. Drug Saf. 2014 May;37(5):343-50. doi: 10.1007/s40264-014-0155-x. Erratum in: Drug Saf. 2014 Jul;37(7):555.

Leaman, R., Wojtulewicz, L., Sullivan, R., Skariah, A., Yang, J., & Gonzalez, G. Towards internet-age pharmacovigilance: extracting adverse drug reactions from user posts in health-related social networks. In Proceedings of the 2010 workshop on biomedical natural language processing (pp. 117-125).

Ryan PB, Madigan D, Stang PE, Schuemie MJ, Hripcsak G. Medication-wide association studies. CPT Pharmacometrics Syst Pharmacol. 2013 Sep 18;2(9):e76. doi: 10.1038/psp.2013.52.

Tatonetti NP, Ye PP, Daneshjou R, Altman RB. Data-driven prediction of drug effects and interactions. Sci Transl Med. 2012 Mar 14;4(125):125ra31. doi: 10.1126/scitranslmed.3003377.

Bates M. Tracking Disease: Digital Epidemiology Offers New Promise in Predicting Outbreaks. IEEE Pulse. 2017 Jan-Feb;8(1):18-22. doi: 10.1109/MPUL.2016.2627238.

Sawers, P., 2021. Crowdsourced coronavirus tracking apps are great, but we need a more coordinated approach. [online] VentureBeat. Available at: <https://venturebeat.com/2020/03/25/crowdsourced-coronavirus-tracking-apps-are-great-but-we-need-a-more-coordinated-approach/> [Accessed 1 August 2021].

Gupta, R., Bedi, M., Goyal, P., Wadhera, S., & Verma, V. Analysis of COVID-19 tracking tool in India: Case study of Aarogya Setu mobile application. Digital Government: Research and Practice, 1.4 (2020): 1-8.

Kandula S, Shaman J. Reappraising the utility of Google Flu Trends. PLoS Comput Biol. 2019 Aug 2;15(8):e1007258. doi: 10.1371/journal.pcbi.1007258.

Wiwanitkit, Viroj. "Google Trends (GT) related to influenza." Cadernos de saude publica 31 (2015): 1334-1335.

Spruit, Marco, and Miltiadis Lytras. "Applied data science in patient-centric healthcare: Adaptive analytic systems for empowering physicians and patients." (2018): 643-653.

Saez-Rodriguez J, Costello JC, Friend SH, Kellen MR, Mangravite L, Meyer P, Norman T, Stolovitzky G. Crowdsourcing biomedical research: leveraging communities as innovation engines. Nat Rev Genet. 2016 Jul 15;17(8):470-86. doi: 10.1038/nrg.2016.69.

Bender E. Challenges: Crowdsourced solutions. Nature. 2016 May 12;533(7602):S62-4. doi: 10.1038/533S62a.

CITATION
DOI: 10.17511/ijmrr.2021.i04.04
Published: 2021-08-27
How to Cite
1.
Mr. Debangshu Mallick, Dr. Upasana Datta. Crowdsourcing applications addressing diseases and public health: a perspective on COVID-19 infestation. Int J Med Res Rev [Internet]. 2021Aug.27 [cited 2021Sep.27];9(4):225-34. Available from: https://ijmrr.medresearch.in/index.php/ijmrr/article/view/1312
Section
Review Article