Study of Tissue Inhomogeneity Effects on Central Axis Radiation Beam Parameters using Monte Carlo Methods

  • Dr. Santhosh VS Assistant Professor, Department of Radiation Physics Government Medical College, Thiruvananthapuram, Kerala, India
  • Dr. Anand RK Assistant Professor, Department of Radiation Physics Government Medical College, Thiruvananthapuram, Kerala, India
Keywords: Tissue inhomogeneity, Monte carlo Methods, Percentage Depth Dose, Radiotherapy

Abstract

Abstract:

Introduction; The central axis radiation beam parameters are used for the dose calculations in radiotherapy and usually measured in a homogeneous medium. Human body is not homogeneous in nature and the incident beam has to travel through different medium such as bone tissue air etc to reach the tumor. The presence of such Inhomogeneity perturb the central axis beam parameters.The experimental measurements of dose variation in the presence such Inhomogeneity is seldom possible and Monte Carlo methods can be used to study in cases.

Objective: The objective of the present work is to study the effects of tissue Inhomogeneity on central axis beam parameter such as Percentage Depth Dose using Monte Carlo Methods

Materials and Methods:The Monte Carlo simulation is a virtual experiment and can be conducted with the  Monte Carlo software tool installed in a PC .Input files are written as per the specification of the Monte Carlo code. Two radiation beams beams commonly used for radiation treatment such as Cobalt 60 and 6MV X ray were used for the simulation.  The study conducted for a homogeneous tissue medium,and two Inhomogeneity situations such as tissue air tissue and tissue bone tissue medium. Percentage Depth Dose(PDD) curves were generated from the simulated results.

Results: Depth Dose characteristics in homogeneous tissue medium for Cobalt60 and 6MV X rays beams were studied and is consistent with the published experimental values.In the second case, at the interface between tissue and bone the PDD pattern changed as reported by the previous works. And the absorbed dose at bone layer is higher than the dose value predicated in a homogeneous condition. In the next simulation we conducted the simulation for a tissue air tissue medium. It was observed that as the beam passes through the tissue air interface the distribution changes drastically. The dose deposition in air become very small and the PDD values at other points in the air medium show large variation than the homogeneous condition. Interestingly It is also observed that a buildup condition occur at the second air tissue interface.

Conclusion: The Monte Carlo Our studies clearly demonstrate the perturbation effects caused by the presence of Inhomogeneity when a radiation beam is transporting through the human tissues.For the accurate estimation of absorbed dose the Inhomogeneity effects must be considered in actual clinical practice and the Monte Carlo study can be used to estimate the Inhomogeneity correction factors that have to be incorporated for dose calculations.The present study clearly demonstrate that Monte Carlo methods simulation can be used as a tool for estimation of dose in tissue Inhomogeneity where measurements are seldom possible.

Downloads

Download data is not yet available.

References

Radiation dose in Rradiotherapy from prescription to Delivery. International Atomic Energy Agency.1996. IAEA-TECDOC-896

Tissue Inhomogeneity Corrections for Megavoltage Photon Beams; Task group No85, American Association of Physicists in Medicine: Medical Physics Publishing: 2004. Report No. 85

Faiz M Khan, Roger A Potish, editors.Treatment planning in Radiation Oncology 1st ed 1998.Williams & Wilkins.

Ahnesjo A, Aspradakis M.M. Dose calculations for external photon beams in Radiotherapy. Phys Med Biol 1999; 44:99-155.doi:10.1088/0031-9155/44/11/201.

Niko Papanikolaou, Sotirios Stathakis. Dose-calculation Algorithms in the Context of Inhomogeneity Corrections for High Energy Photon Beams. Med Phys.2009; 36(10):4765-75.doi: 10.1118/1.3213523.

Andreo, P., Burns, D. T., Nahum, A. E., Seuntjens, J. & Attix F H. Fundamentals of ionizing Radiation Dosimetry. 2017. John Wiley & Sons.

Pedro Andreo. Dose to 'Water-Like' Media or Dose to Tissue in MV Photons Radiotherapy Treatment Planning: Still a Matter of Debate.Phys Med Biol. 2015;60(1):309-37. doi:10.1088/0031-9155/60/1/309.

Sonja Dieterich, Eric Ford, Dan Pavord, Jng Zeng. Practical Radiation Oncology Physics, A Companion to Gunderson & Tepper's Clinical Radiation Oncology: Chapter 5, 61-86. 2015. Elsevier Health Sciences.

A. Dutreix, “When and how can we improve precision in radiotherapy?”Radiother. Oncol. 1984: 2:275–292. doi: 10.1016/s0167-8140(84)80070-5

S. Dische, M. I. Saunders, C. Williams, A. Hopkins, and E. Aird, Precision in reporting the dose given in a course of radiotherapy. Radiother. Oncol.1993: 29:287–93.doi:10.1016/0167-8140(93)90146-y.

J F Williamson .Radiation Transport Calculations in Treatment Planning. Comput Med Imaging Graph May- Jun 1989;13(3):251-68. DOI: 10.1016/0895-6111(89)90132-8.

Joao Seco, Frank Verhaegen, editors. Monte Carlo Techniques in Radiation Therapy. CRC Press. from web site http://www.crcpress.com.

Bielajew, A. F. Fundamentals of the Monte Carlo method for neutral and charged particle transport. The University of Michigan (2001) .from website http://umich.edu/~nersa590/basics.pdf.

Andreo P. Monte Carlo techniques in Medical Radiation Physics. Phys Med Biol.1991; 36:861– 920. doi: 10.1088/0031-9155/36/7/001.

Fix MK, Keall PJ, Dawson K, Siebers JV. Monte Carlo source model for photon beam radiotherapy: Photon source characteristics. Med Phys. 2004 Nov;31(11):3106-21. doi: 10.1118/1.1803431

Pedro Andreo Monte Carlo Simulations in Radiotherapy Dosimetry. Radiat Oncol. 2018 Jun 27;13(1):121 doi:1186/s13014-018-1065-3

Verhaegen F., and Seuntjens J. Monte Carlo modelling of external radiotherapy photon beams. Phys Med Biol 2003; 48: pp. R107-R164.doi: 0.1088/0031-9155/48/21/r01

Mackie T.R.Applications of the Monte Carlo method in radiotherapy.in: Kase K.R. Bjarngard B.E. Attix F.H. Dosimetry of Ionizing Radiation. Vol. III. Academic Press, Inc, San Diego1990: 541-620

Ding GX. Dose discrepancies between Monte Carlo calculations and measurements in the buildup region for a high-energy photon beam Med Phys. 2002 Nov;29(11):2459-63. doi: 10.1118/1.1514237.

Brualla L, Rodriguez M, Lallena AM.. Monte Carlo systems used for treatment planning and dose verification. Strahlenther Onkol. 2017Apr;193(4):243-259. doi: 10.1007/s00066-016-1075-8.

Mohan R., and Antolak J. Monte Carlo techniques should replace analytical methods for estimating dose Distributions in radiotherapy treatment planning. Med Phys 2001; 28: pp. 123-126 PMID: 11243333.

Mauceri T., Kenneth Kase. Effects of ionization chamber construction on dose measurements in a Heterogeneity. Med Phys. 1987 Jul-Aug;14(4):653-6. doi: 10.1118/1.596034.

Fujio Araki, Monte Carlo-based correction factors for ion chamber dosimetry in heterogeneous phantoms for megavoltage photon beams, Physics in Medicine and Biology. 2012:57( 22):7615-7627.doi: 10.1088/0031- 9155/57/22/7615

Antonella Fogliata 1, Eugenio Vanetti, Dirk Albers, Carsten Brink, Alessandro Clivio, T Knoos, G Nicolini Luca Cozzi . On the Dosimetric Behaviour of Photon Dose Calculation Algorithms in the Presence of Simple Geometric Heterogeneities: Comparison with Monte Carlo Calculations. Phys Med Biol. 2007 Mar 7;52(5):1363-85. doi: 10.1088/0031-9155/52/5/011.

Al Hallaq H.A., Reft C.S., and Roeske J.C. The dosimetric effects of tissue heterogeneities in intensity-modulated radiation therapy (IMRT) of the head and neck. Phys Med Biol. 2006 Mar 7;51(5):1145-56. doi: 10.1088/0031-9155/51/5/007

26 A Toutaoui, S. Ait chikh, N. Khelassi-Toutaoui and B. Hattali. Monte Carlo photon beam modeling and Commissioning for radiotherapy dose calculation algorithm. Physica Medica, 2014:30(7): 833-837, PMID: 24947967

MohammadTaghi,Bahreyni Toossi, Bagher Farhood.Shokouhozaman Soleymanifarda. Evaluation of Dose Calculations Accuracy of a Commercial Treatment Planning System for the Head and Neck Region in Radiotherapy. Rep Pract Oncol Radiother;2017;22(5):420-427. doi: 10.1016/j.rpor.2017.06.001

Mahmoudi G., Farhood B., Shokrani P., Amouheidari A., Atarod M. Evaluation of the photon dose calculation accuracy in radiation therapy of malignant plural mesothelioma. J Cancer Res Ther. 2017 Available from: http://www.cancerjournal.net/aheadofprint.asp.doi: 10.4103/0973-1482.187284

Yuichi Akino 1, Indra J Das, Gregory K Bartlett, Hualin Zhang, Elizabeth Thompson, Jennifer E Zook. Evaluation of Superficial Dosimetry Between Treatment Planning System and Measurement for Several Breast Cancer Treatment Techniques. Med Phys. 2013 Jan;40(1):011714. doi: 10.1118/1.4770285.

Niroomand Rad A., Harter K.W., Thobejane S., and Bertrand K.: Air cavity effects on the radiation dose to the larynx using Co-60, 6 MV and 10 MV photon beams. Int J Radiat Oncol Bio1994 Jul 30;29(5):1139-46. doi: 10.1016/0360-3016(94)90411-1.

Chow JC, Jiang R, Leung MK. Dosimetry of oblique tangential photon beams calculated by uperposition/convolution algorithms: a Monte Carlo evaluation..J Appl Clin Med Phys. 2010;12(1):3424. doi: 10.1120/jacmp.v12i1.3424

Elcim Y, Dirican B, Yavas O. Dosimetric comparison of pencil beam and Monte Carlo algorithms

in conformal lung radiotherapy. j Appl Clin Med Phys. 2018;19(5):616-624. doi: 10.1002/acm2.12426

Demarco JJ, Chetty IJ, Solberg TD A Monte Carlo tutorial and the application for radiotherapy treatment

planning.Med Dosim. 2002 ;27(1):43-50. doi: 10.1016/s0958-3947(02)00087-0.

Central Axis Depth Dose Data for Use in Radiotherapy. British Journal of Radiology, BJR Suppl, 25, 1996

Mohan R, Chui C, Lidofsky L Energy and angular distributions of photons from medical linear accelerators.

Med Phys 1985; 12: 592–597.doi: 10.1118/1.595680.

F.Verhaegen.Evaluation of the EGSnrc Monte Carlo Code for Interface Dosimetry Near high-Z Media Exposed to Kilovolt and 60 Co Photon . Phys Med Biol. 2002 May 21;47(10):1691-705. doi:10.1088/0031-9155/47/10/306.

B Teimouri Sichani 1, M Sohrabpour. Monte Carlo Dose Calculations for Radiotherapy Machines: Theratron 780-C Teletherapy DOI: 10.1088/0031-9155/49/5/011

G M. Mora , A Maio, D W Rogers. Monte Carlo Simulation of a Typical Co 60 Therapy Source Med Phy

Nov;26(11):2494-502. doi: 10.1118/1.598770

Faiz M. Khan. The Physics of Radiation Therapy.4th edn .2012. Lippincott Williams & Wilkins.

S N Rustgi, A K Rustgi, Steve B Jiang, K M Ayyangar. Dose perturbation caused by high-density inhomogeneities in small beams in stereotactic radiosurgery. Phys Med Biol 1998 Dec;43(12):3509-18. doi: 10.1088/0031-9155/43/12/009

Cardoso SC, Alves VGL, da Rosa LAR, Campos LT, Batista DVS, Facure A. Monte Carlo Simulation of Bony Heterogeneity Effects on Dose Profile for Small Irradiation Field in Radiotherapy.PLoS ONE. 2010. 5(5): e10466. https://doi.org/10.1371/journal.pone.0010466.

Nisbet A, Beange I, Vollmar H S, Irvine C, Morgan A and Thwaites D I. Dosimetric verification of a commercial collapsed cone algorithm in simulated clinical situations. Radiother. Oncol.2004. 73 79–88.

F.Seif,1 M.R. Bayatiani,1 S. Hamidi, M. Kargaran. Investigating the Effect of Air Cavities of Sinuses on the Radiotherapy Dose Distribution Using Monte Carlo Method. J Biomed Phys Eng. 2019 Feb; 9(1): 121–126..PMCID: PMC6409366.

Miura H, Masai N, Yamada K, Sasaki J, Oh RJ, Shiomi H, et al. Evaluation and commissioning of commercial Monte Carlo dose algorithm for air cavity. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology. 2014;3:9. doi: 10.4236/ijmpcero.2014.31002.

Behrens CF. Dose build-up behind air cavities for Co-60, 4, 6 and 8 MV. Measurements and Monte Carlo simulations. Phys Med Biol. 2006 Nov 21; 51(22):5937-50 DOI: 10.1088/0031-9155/51/22/015.

Shahid A. Naqvi X. Allen Li Shada W. Ramahi James C. Chu Sung‐Joon Ye. Reducing loss in lateral charged‐particle equilibrium due to air cavities present in x‐ray irradiated media by using longitudinal magnetic fields Med Phys. 2001 Apr;28(4):603-11. doi: 10.1118/1.1357816.

Emami B, J. Lyman, A. Brown, L. Coia, M. Goitein, F. W. Munzinrider, B. Shank, L. J. Solin, and M. Wesson.Tolerance of normal tissue to therapeutic irradiation.Int. J. Radiat. Oncol. Biol. Phys. 21:109–122 (1991).

RJ Chetty 1, B Curran, J E Cygler, J J DeMarco, G Ezzell, B A Faddegon, I Kawrakow, P J Keall, H Liu, C

M Charlie Ma, D W O Rogers, J Seuntjens, D S-Bagheri, J V Siebers of the AAPM Task Group No. 105:

Issues Associated With Clinical Implementation of Monte Carlo-based Photon and Electron External Beam

Treatment Planning. Med Phys. 2007.(12):4818-53. doi: 10.1118/1.2795842.

Rana S and Pokharel. Verification of dose calculation algorithms in a multi-layer heterogeneous phantom

using films.Gulf J Oncolog.20131(14):63-9.PMID:23996869. Available from http://www.gffcc.org/journal/docs/issue14/pp%2063-69%20Rana-198.pdf

A Fogliata1,EVanetti1, D.Albers, C.Brink, A. Clivio1, Tommy Knoos, G. Nicolini1 and Luca Cozzi1. On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations.Phys Med Biol. 2007;52(5):1363-85. doi: 10.1088/0031-9155/52/5/011.

CITATION
DOI: 10.17511/ijmrr.2020.i05.03
Published: 2020-10-29
How to Cite
1.
Dr. Santhosh VS, Dr. Anand RK. Study of Tissue Inhomogeneity Effects on Central Axis Radiation Beam Parameters using Monte Carlo Methods. Int J Med Res Rev [Internet]. 2020Oct.29 [cited 2020Dec.5];8(5):352-6. Available from: https://ijmrr.medresearch.in/index.php/ijmrr/article/view/1212
Section
Original Article