Neonatal septicemia and Thrombocytopenia

Ghanghoriya PK¹, Gedam DS²

¹Dr Pawan Kumar Ghanghoriya, Associate professor, NSCB Medical College Jabalpur, MP, India, ²Dr D Sharad Gedam, Professor of Pediatrics, L N Medical College, Bhopal, MP, India.

Address for correspondence: Dr Pawan Kumar Ghanghoriya, Email: docpawanvineeta06@gmail.com

Abstract

Thrombocytopenia is common problem in sick newborn. It is an early marker of neonatal septicemia. Mortality is high when septicemia is associated with severe thrombocytopenia. During platelet transfusion baby's gestational age, post natal age and underlying and associated clinical conditions must be kept in mind.

Key words: thrombocytopenia, neonatal septicemia, platelet transfusion

Thrombocytopenia is one of the common hematological problem encountered in newborn admitted in NICU. The frequency of neonatal thrombocytopenia has been estimated to range from 20 to 40% of the newborns admitted to NICU in different studies [1,2]. A clinical classification of thrombocytopenia is based on the time of presentation, early (≤72 hours of life) vs. late (>72 hours of life). Most common cause of early thrombocytopenia is placental insufficiency. It is not severe and resolve mostly in one to two weeks without any treatment. In contrast, neonates who develop late-onset thrombocytopenia frequently have bacterial sepsis or necrotizing enterocolitis [3].

Late onset thrombocytopenia has a distinct natural history. Late onset thrombocytopenia is an early marker of Neonatal sepsis or Necrotizing enterocolitis once sign and symptoms appears. Usually thrombocytopenia progresses rapidly, with a platelet nadir reached within 24–48 hours. Thrombocytopenia is often severe, with affected neonates often requiring platelet transfusions until sepsis or NEC are controlled, followed by a slow recovery in platelet numbers over the following four to five days. Bacterial sepsis causes thrombocytopenia by several mechanisms, including disseminated intravascular coagulation (DIC), endothelial damage, immune-mediated destruction, platelet aggregation due to bacterial products adhering to platelet membrane, and decreased platelet production from infected bone marrow [4, 5].

Infection should be ruled out in any ill-appearing newborn whose platelet count is less than 50 x 10³/μL (50 x 10⁹/L) because neonates with late onset thrombocytopenia with sepsis have a 10–15% mortality [6].

Neonatal septicemia requires rapid and accurate diagnosis for better prognosis. Thrombocytopenia occurs in early course of septicemia, therefore platelet count may be considered as early predictor for the diagnosis of septicemia [7, 8, 9]

Almost all kind of neonatal infection whether bacterial, viral, fungal or congenital can lead to thrombocytopenia. Klebsiella species is noted to be the commonest organism. Other organism responsible include E. coli, Staph. aureus, Staph. epidermidis, Group B Streptococci, Enterococcus faecalis, Entrohacter sp., Acinetobacter sp., Pseudomonas sp., Proteus sp., Citrobacter seen in developing countries [9]. Thrombocytopenia is not only common but more severe also in gram negative septicemia [9, 10]

Platelet transfusions are frequently given to neonatal intensive care unit (NICU) patients with severe thrombocytopenia (platelets less than 50 x 10⁹/L(-1)) but no study has assessed whether this is clinically appropriate [6]. Platelet count 30 x 10⁹/L might be an adequate threshold for stable non-bleeding neonates [11]. The risk of haemorrhage is difficult to assess because it is closely related to the gestational age, postnatal age of the neonate as well as the cause of the thrombocytopenia and the severity of concurrent conditions. Platelets can be transfuse as per the following guidelines [table][11].
References

How to cite this article?