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Peptic ulcers are described as acid-induced lesions found in the stomach and duodenum caused by
the imbalance between the defending factors of the mucosa and the attacking factors such as
hydrochloric acid in gastric juice, with Helicobacter Pylori (H. Pylori) and Non-Steroidal Anti-
Inflammatory Drugs NSAIDs. They exhibit seasonal patterns in their occurrence, with higher
occurrence in winter and spring and a low occurrence in summer. Temperature plays a major role in
their occurrence, some of which have resulted in increased morbidity in some number of diseases,
such as gastrointestinal bleeding, caused by an increase in air pressure, dry air (relative humidity)
occurring from cold air, and also its actions on the protective effect helicobacter pylori in the human
body. Their actions excite the adrenal gland marrow and the sympathetic nerve, causing rapid
secretion of adrenaline and non-adrenaline, angiotensin II and endothelin, resulting in damage to
the mucosa epithelial, caused by the contraction effect of the adrenal agents on the duodenal
mucosa and blood vessel. It causes low expression of Epidermal Growth Factor Receptor (EGFR),
Epidermal Growth Factor (EGF), Heat Shock Protein (HSP) 70, Occludin, Nitric Oxide Synthase
(NOS), in the gastric mucosa, in extremely cold temperature than those in extremely hot
temperature, increasing the gastric acid secretion in extremely cold temperature than in extremely
hot temperature. Therefore, this review aims to give general insight into the role of low temperature
in peptic ulcer development and further consideration in the treatment of peptic ulcer diseases.
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Introduction
Peptic ulcers are described as acid-induced lesions
found in the stomach and duodenum, characterized
by denuded mucosa with its defect extending into
the sub-mucosa or muscularis propria, [1]. These
diseases tend to share a common pathway of acid-
pepsin pathogenesis, [2]. The major ones are
Duodenal Ulcer (DU) and Gastric Ulcer (GU), [2].
This is due to the imbalance between the defending
factors of the mucosa and the attacking factors such
as hydrochloric acid in gastric juice [3]. The main
risk factors for these diseases are Helicobacter
Pylori (H. Pylori) and Non-Steroidal Anti-
Inflammatory Drugs (NSAIDs) [1,4]. Ulcerations in
the gastro-duodenal tract are seen as defects of the
mucosal lining resulting from the epithelial cell
damaged brought into play by caustic agents such
as acid and pepsin, [5]. These caustic agents prevail
over the defensive mechanisms of the
gastroduodenal mucosa, observing from a
pathophysiological standpoint, [6]. They are not
classified as a single entity, rather they are group
according to their lesion site, i.e., stomach or
duodenum, and presence or absence of
complications, i.e., hemorrhage or perforation,[7].

Non-steroidal anti-inflammatory drugs are the most
common drugs, used for pain and inflammation
reduction, with proven efficacy, [8]. However, they
have been said to account for over 90% of ulcers
with substantial implications and complications
associated with gastro-intestinal toxicities, [9,10].
Its mechanism of action is through COX-1 inhibition
in the gastrointestinal tract, leading to a reduction
in prostaglandin secretion and gastric mucosa
cytoprotective effect, [11]. These all together
increases the risk of damage to the mucosa, [11].
Peptic ulcer remains an important cause of
morbidity and health care cost, [12]. The natural
history of peptic ulcers ranges from healing without
intervention to the development of complications
such as bleeding and perforation, [12]. In a review
study, the pooled incidence of uncomplicated peptic
ulcer disease (PUD) was approximately one case per
1000 person-years in the general population and
the incidence of ulcer complication was about 0.7
cases per 1000 person, [13]. The cases of PUD vary
based upon the presence of Helicobacter pylori.
Higher rates are found in countries where
Helicobacter pylori infection is higher with
approximately 1 percent per year, a case that is 6-
10 fold higher in uninfected individuals,
[14,15,16,17].

A population-based one-year prevalence of PUD of
0.1 to 1.5 percent based on physician diagnosis and
0.1 to 0.19 percent based on hospitalization data
was recorded by Sung et al., (2009), [18]. In the
unitedstates, a study by Anand et al., (1996), [19]
reported an endoscopic point prevalence for peptic
ulcers in asymptomatic, H. pylori-positive adults of
2 percent. Ulcer incidence increases with age for
both duodenal and gastric ulcers, [19].

Role of temperature on helicobacter pylori (H.
Pylori)

Helicobacter pylori, a gram-negative bacterium,
infesting more than 50% of the world population
[20], has its home in the human gastric mucosa,
causing stomach injury, [21]. Its communication
with the receptors of epithelial cells accompanied by
endogenous pathways stimulation and its actions on
soluble bacterial components alters or destroys the
gastric barrier, [22, 20]. Its ability to survive and
endure in an organism has been said to be mediated
by the production of catalase by bacteria. [23,24].
Vitamin-D and D-receptors in target tissues such as
the intestine, immune cells, has also been identified
to play an important protective role in H. Pylori
infection, [25,26,27]. Its synthesis which is in
response to sunlight and ultraviolet radiation is
affected by season, temperature, latitude, and daily
sunshine duration,[28]. A recent study revealed that
lower H. pylori infection rates were associated with
higher average annual temperature while average
daily sunshine time correlated positively with H.
pylori infection, [29]. It also revealed that,
individuals dwelling at high latitude showed a high
H.Pylori infection rates, [29].

Although the mechanism of action of H. Pylori hasn’t
been understood fully, it has been said to be
associated with acute and chronic inflammatory
responses with a resultant infection in
gastric/duodenal ulcers or the development of
gastric cancer, [30]. It was said that, the excessive
damage done to the barrier by inflammation allows
the movement of H. Pylori-virulence-factors into the
circulation resulting in the development of a
systematic inflammatory response, [30]. Studies
also revealed that, lower decrease in the body
immunity functions during the cold season, such as
a decrease in the number of outer lymph cells and B
lymph cells, makes the duodenal mucosa subjected
to attack easily by Helicobacter Pylori resulting in
the inhibition of the mucosa growth factors, and the
rapid development of a peptic ulcer, [31,32,33].
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Role of Temperature in the Occurrence of
Peptic Ulcer

Large numbers of medical conditions have been
observed to exhibit seasonal patterns in their
occurrence. Examples are; gastrointestinal diseases
and cardiovascular diseases, both occurring with
high frequency in winter months, [34,35,36,37]. It
is characterized by seasons, with a higher
occurrence in winter and spring and a low
occurrence in summer, [3]. Although H. Pylori and
NSAIDs are the major factors responsible for the
onset, development, and occurrence of peptic
ulcers, only a few studies have been carried out to
determine the role of extreme weather and climatic
conditions in the development and treatment of
peptic ulcer diseases, [1]. Few studies have
observed that, temperature plays a major in the
occurrence of peptic ulcers, some of which have
resulted in increased morbidity in some number of
diseases, such as gastrointestinal bleeding, [36, 38,
39], which exhibit a higher frequency in the winter
than in the summer, [40].

The actions of temperature on ulcer development
have been also said to be caused by an increase in
air pressure and dry air relative humidity occurring
from cold air, [41,42,43,44]. A series of stress
actions have been observed to occur when
meteorological factors such as temperature violently
change into a severe cold atmosphere i.e., change
in temperature, [40,43]. These actions excite the
adrenal gland marrow and the sympathetic nerve,
causing rapid secretion of adrenaline and non-
adrenaline, angiotensin II, and endothelin, [31],
resulting in damage to the mucosa epithelial,
caused by the contraction effect of the adrenal
agents on the duodenal mucosa and blood vessel as
a result of insufficient oxygen supply, [42.45.46,47].
The stress caused by cold reduces the secretion of
inhibitable growth factors, increasing the secretion
of hydrochloric acid in gastric juice, accelerating the
onset of peptic ulcers, [31].

A recent study examined gastric mucosal damage
and its barrier function (through associated barrier
factors) under an extremely hot temperature at an
average of >300c and an extremely cold
temperature at an average of < 100c, [48]. Their
results revealed low expression of epidermal growth
factor receptor (EGFR), epidermal growth factor
(EGF), heat shock protein (HSP) 70, occludin, nitric
oxide synthase (NOS), in the gastric mucosa, in
extreme cold temperature than those in extreme
hot temperature, whereas the gastric acid secretion

Was higher in extreme cold temperature than in
extreme hot temperature, [48].

Role of Temperature on Mucosa Barrier
Proteins

Mucosal barrier functions are defined by tight
junctions, [49]. Tight junctions comprise multiple
proteins, including; occludin, heat shock protein,
epidermal growth factor, and claudins, which have
been characterized as barrier enhancing or pore-
forming, [48, 49]. They are the most important
structural component for the formation of
constitutive barrier function in epithelial cells,
present on the apical end of the lateral membrane
surface in epithelial cells therefore forming a barrier
against paracellular transport and maintaining
apicobasal cell polarity through their fence function,
[50]. Changes to these components that regulate
and maintain distinct permeability pathways as well
as the mucosal immune stimuli can result in barrier
loss,[49].

Nitric Oxide (NO): is a highly reactive molecule
playing an important fundamental role in the
maintenance of normal vasomotor tone,[51]. It has
been said that its degree of expression in the gastric
mucosa membrane reflects gastric mucosa blood
volume, therefore playing a defensive role in the
protection of gastric mucosa, [51]. Its level of
expression has been revealed to be low during cold
temperatures,[48].

Nitric oxide is a gaseous molecule with autocrine
and paracrine effects on many cell types. Nitric
oxide is synthesized from the amino acid l-arginine
by NO synthase (NOS) and is involved in a myriad
of cellular functions including muscle relaxation,
neuronal signaling and immune function. It is one of
the smallest molecules in nature,[52].

In the gastrointestinal tract, NO participate in the
modulation of smooth musculature tone such as
regulation of intestinal peristalsis, gastric emptying,
antral motor activity, [53]. It also regulates acid and
gastric mucus secretion, alkaline production and is
involved in the maintenance of mucosa blood flow
and also demonstrates gastro-protective properties
against different types of aggressive agents.
However, a high concentration of NO is related to
numerous pathological processes of gastrointestinal
tract (GIT. Nitric oxide is produced in the GIT by
enzymatic, non-enzymatic or bacteria production
mechanisms. For example, xanthine oxidoreductase
is an enzyme that under hypoxic conditions can
produce NO by reduction of nitrate (NO3-) and
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Nitrite (NO2-).

Nitric oxide can also be formed from dietary nitrate
which is in the oral cavity and is reduced by
bacterial reductases to nitrite, [54], yielding NO gas
after acidification in the gastric lumen, [55]. Nitric
oxide production from the reaction of hydrogen
peroxide with arginine is an example of the non-
enzymatic production of NO, [56]. Nitric oxide is
produced by anaerobic bacteria in the colon using
nitrite and nitrate as substrate, [57,58].

Some important roles of NO in GIT functions
include;

Heat shock proteins (HSP): They have been said
to play a major role in the gastroduodenal defense

Mechanism with their expressions activated by heat
shock, an example of which is HSP 70 induced by
molecular chaperones,[67,68]. It is also said to be
involved in various biological activities, such as
apoptosis prevention, protection from cytotoxic
damage, e.g. from NSAIDs or H. pylori infection,
and the facilitation of ulcer healing, [67,68]. It has
also been revealed to have low expression in the
gastric mucosa during cold temperatures,[48].

Epidermal growth factor (EGF) and epidermal
growth factor receptor (EGFR) protein: They
have both been revealed to be involved in peptic
ulcer healing and re-epithelialization, which has also
been found to be associated with gastric mucous
surface epithelial cells differentiation, proliferation
and migration [69], with their expression
significantly low during the cold season, [48].

Epidermal growth factor (EGF) is a 53-amino acid
peptide, it plays an important role in regulating and
maintaining cell growth or development, survival,
migration, apoptosis, proliferation and
differentiation by binding to epidermal growth factor
receptor (EGFR), [70]. It is an effective intestinal
regulator helping to protect intestinal barrier
integrity which is important in the absorption of
nutrients and health in humans and animals[70].
According to Zeng and Harris (2014),[71], it has
been detected in a variety of body fluids such as
saliva, milk, amniotic fluid, urine, plasma, and
intestinal fluid.

Epidermal Growth Factor also functions as a
gastrointestinal tract (GI) mucosal protective factor,
which associates with intestinal maturation and
maintenance of epithelial cell homeostasis in the
small intestine, [72]. Some importance of EGF on
stomach and duodenal function include the
following;
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01. Motility: the motility of the GI tract is controlled
by enteric inhibitory and excitatory motor
neurons that innervate the smooth muscle layer.
Distention of the gut by a food bolus is detected
by local enteric afferent neurons. About 50% of
the nerves in the enteric nervous system
contain NOS which are located in the myenteric
and muscle fibres, [59].

02. Secretion and Absorption: Nitric oxide is
involved in intestinal water transport by acting
directly on the epithelium and blood flow or
indirectly by stimulating neuronal reflexes or
interactions with other agents. For example, NO
activates soluble guanylate cyclase and this
result in cGMP generation which is a potent
activator of the intestinal secretion, [60].

03. Intestinal inflammation, carcinogenesis and
apoptotic processes: nitric oxide is important in
maintaining mucosal integrity of the GI tract by
several mechanisms. Nitric oxide plays a pivotal
role in protecting the GI mucosa from a variety
of noxious stimuli through the maintenance of
mucosal perfusion,[61,62]. It also plays a
critical role in modulating the defensive
mechanisms in the GI tract due to its anti-
inflammatory action and improvement of
mucosa integrity. Nitric oxide functions in
apoptosis in two ways based on its
concentration, low concentration protect B
lymphocytes against viral infections whereas
high concentrations induce apoptosis,[63,64].

04. Gastrointestinal diseases: impaired NO release
is indicated in disease with non-relaxing
sphincters or bowel segments like achalasia,
[67], and infantile hypertrophic pyloric stenosis,
[66].

01. Regulation of Tight Junction: tight junction
regulates the passage of ions, water and solute
and solutes and acts as a fence to maintain cell
polarity by blocking the free diffusion of proteins
and lipids between the apical and basolateral
domains of the plasma membrane, [73].The
epidermal Growth Factor is a key regulator of
epithelial permeability,a property that depends
on Tight Junctions, [74,75]. Epidermal Growth
Factor has been shown to protect intestinal
barrier function by preventing early-weaned,
[76], hydrogen peroxide, [77,78,79], ethanol
[80], acetaldehyde,[81,82,83] and intestinal
ischemia-reperfusion [84,85], induced
disruption of Tight Junctions and permeability.
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Xu et al.(2015) [76], indicated that the oral
administration of EGF could improve the gene
expression of tight junction proteins such as ZO-
1, claudin-1, and occludin, thus enhancing the
intestinal barrier function of early-weaned
piglets. Hydrogen peroxide-induced intestinal
barrier disruption was prevented by Epidermal
Growth Factor through Mitogen-activated Protein
Kinase (MAPK) and Protein Kinase C(PKC)
pathways.

Epidermal Growth Factor induces changes in the
composition of Tight Junctions (TJ) through
activating several signalling pathways such as
Protein Kinase C (PKC),[78], Mitogen-activated
Protein Kinase (MAPK),[74] and Signal Transducers
and Activators Transcriptions (STATs) in different
types of cells, [86].

PKC pathway: Protein Kinase C is a family of
serine/threonine protein kinases that plays an
important role in controlling the function of other
proteins and in several signal transduction cascades,
[87,88]. Protein Kinase C enzymes are activated by
signals including the increased concentration of
diacylglycerol (DAG) or calcium ion, [89]. The PKC
family consists of fifteen isoenzymes in humans,
[90]. These isoenzymes are divided into three
subfamilies of conventional, novel and atypical,
[91]. Protein Kinase C is transported to the plasma
membrane after activation and it helps in the
contraction of smooth muscles in the GIT,[92,93].

MAPK pathway: This pathway is also known as the
Ras-Raf-MEK-ERK pathway, it is a chain of proteins
in the cell that relates information within the cell
through the communication of signals from a
receptor on the surface of the cell to the DNA in the
nucleus of the cell which leads to some changes in
the cell such as cell division, [94].

The MAPK pathway plays a major role in integrating
and relating external signals from the presence of
mitogens such as epidermal growth factors (EGF)
into signalling events thereby promoting cell growth
and proliferation in many mammalian cell types,
[95].

Activated MAPK can phosphorylate a wide range of
substrates and thereby affecting a broad array of
cellular functions including motility and proliferation.
It was shown in a recent study that the MAPK
pathway is involved in the regulation of TJ proteins
in mouse epididymis, [96].

The contradictory effect of MAPK activation is more
pronounced in TJ integrity where its activation leads
to disruption of TJs in some epithelial monolayers
and prevention in other epithelia, this was observed
in Caco-2 cell monolayers by Aggarwal et al.,
(2011), [97].

STATs pathway: it is a chain of interactions or
communication between proteins in a cell that is
involved in processes such as immunity, cell
division, cell death and tumor formation. This
pathway communicates and relates information
from chemical signals from outside of a cell to the
cell nucleus resulting in the activation of genes
transcription, [98]. Disruption to this pathway can
cause serious diseases such as cancers, immune
system disorders and skin conditions, [98].

The biological functions of EGF a remediated
through binding to EGFR and subsequent activation
of various signal transduction pathways to regulate
intestinal development, Tight Junctions expression
and mucins secretion which is important for the
formation of intestinal barrier functions, [99,106,
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01. EGF Promotes Mucin Secretion: The EGF
protects and separates itself physically from
exogenous stress by secreting mucins to form a
thick protective layer of mucus over the
intestinal mucosa which are important for
intestinal lubrication, limiting bacteria adhesion
and maintaining proper intestinal permeability,
[99,100,101].

02. EGF Reduces Bacterial Colonization: The
intestinal microbiota profile plays an essential
role in intestinal integrity. EGF can reduce
colonization of the intestinal epithelium by
entero-pathogens, such as Escherichia coli
(E.coli),[102,76,103,104] Campylobacter jejuni
(C.jejuni),[105], and Enterococcus.[102].

03. EGF and intestinal development: EGF plays a
significant role in intestinal development,
including increasing villous height and crypt
depth, enhancing enterocyte proliferation, and
stimulating secretion of digestive enzymes such
as trypsin, chymotrypsin, alkalinephosphatase,
sucrase, maltase, and lactase, which is
important for improving nutrition absorption,
feed utilization, and growth performance of
animals,[76,99, 102,106,107,108].

04. Other importance includes inhibition of acid
secretion, protects gastric mucosa against
injury, mediates inflammation, mediates mucosa
adaptation and accelerates ulcer healing.
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107]. The epidermal Growth Factor acts as a key
epithelial mucosa regulator to regulate intestinal
permeability and intestinal barrier integrity.

Conclusion
In summary, the cold temperature has been
identified to be one of the major factors in the
occurrence of peptic ulcer, performing its functions
by directly acting on the adrenal glands to increase
the secretion of endothelin, adrenaline, which exerts
their contracting effect on the duodenal mucosa and
blood vessel resulting in mucosa damage. It also
plays a major role by limiting the expression of
mucosa barrier proteins; which are the major
defence proteins against helicobacter pylori and
non-steroidal anti-inflammatory drugs. Therefore,
giving the dearth knowledge of the role of
temperature in the treatment of peptic ulcer
diseases, it is very important to consider
temperature as one of the major factors in the
treatment of peptic ulcer diseases.
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